24 March 2024

The Acceptance Phase

Over the years I've posted here a few times about my adventures with my Elecraft KX2. Recently I wrote about upgrading it with the new Elecraft KXIBC2 board, which allows charging of the lithium-ion battery while still installed in the radio. I've also sung its praises here and on other forms for it's excellent design, modularity, maintainability, manufacturer support and world-class performance on SSB. 

What I've had to finally come to accept, though, is that the KX2's is a lousy digital mode performer. 

I so desperately want this little rig to run things like Winlink and JS8CALL, but I've struggled on-and-off for two years to get it working correctly, with no real success. Lord knows, I've put a few dozen hours into the effort, and have bought no end of USB sound card dongles, Digirig interfaces, cables and assorted bits 'n bobs. All to no end. My last attempt was a few days ago, when a JS8CALL session on three different bands netted only two very weak beacon reports. OK, I was getting out, but not well, and I have no idea why.

I'm no digital mode dummy. The list of radios I've run Winlink, JS8CALL, VarAC, Fldigi, MS-DMT and other digital modes on is extensive. Probably close to a dozen different models across all manufacturers, some with internal sound card interfaces, some requiring external sound card setups like the Signalink. The KX2 is, hands down, the most difficult radio I've ever dealt with on digital modes.

"No Winlink for you!"

This isn't a tragedy, merely an inconvenience. I've got other QRP rigs that do just fine on digital modes, like the Icom IC-705. It's just disappointing that an otherwise great little rig is a stinker on digital. Going forward it'll be relegated to SSB only, and in that use it's at the top of the heap. It's such a cracking good little radio that it'll stay on my 'do not sell' list, along with my Yaesu FT-818 (which, by the way, runs digital modes without breaking a sweat). One of the reasons is that the KX2 has had the MARS mod done to it, and I've actually used it to check into both MARS and SHARES nets. It's usefulness as a sideband rig is beyond measure.

So if anyone out there has a KX2 (or KX3) and runs it successfully on digital modes, I'd desperately love to talk with you. Drop me a line.

Until then, I'm screwing up the courage to do the MARS mod on my IC-705.

W8BYH out

13 March 2024

Thinking Outside The Box

Pet peeve time.

Ham radio is in love with the go-box. You can't attend a hamfest or club meeting without seeing presentations on, or hearing discussions about, go-boxes; what goes in them, how they are built, how to power them, how to connect to them, etc. Suffice to say, ham radio is go-box batty. Proof? Just Google 'ham radio go box'. 

The go-box concept is good, but it can be limiting in both capabilities and scope. Just the mindset that all your capability has to fit into a single box, and if it doesn't fit, then you don't need it, is a silly way to approach a problem. 

I haven't seen too many go-boxes that were built to meet a specific mission or requirement. For example, I once asked a person demonstrating his go-box why he included a VHF packet modem. He admitted there wasn't a clear need for it - it was there 'just in case'. This in a region that hasn't seen any public service related packet activity for over 15 years.

I don't want to disparage the concept of the go-box, but the 'box' mentality and the lack of a requirements-based approach seems to lead to a lot of implementations that look like solutions in search of a problem.

Let's think beyond the go-box and instead think about the concept of a mission-focused communications hub or, as we used to call them in the Army, a 'comms center'. A comms center is just a place - a table, a room, a shelter, a tent. Heck, it can be the tailgate of a pickup truck. But it is the place at which you build out a communications hub in support of an event or incident, and build it out tailored to the mission requirements.

A comm center can be anywhere, even in a sandbagged bunker

I use the term 'mission focus' a lot, and it really is the key to the comms center concept. You build capability to meet a specified mission. Let's use a county-level ARES group as an example. Do a mission analysis and ask yourself (and your EMA) these questions: 

  • What are your served agencies? 
  • What are the missions of these served agencies? 
  • What communications capabilities do they need to meet their missions? 
  • What are their organic communications capabilities?  
  • What are they lacking? 
The answer to 'What are they lacking?' is what should drive your mission focus. Once you identify and understand that gap, and build capabilities to close it, you are on the path to establishing a formal comms center.

The comms center concept is also fluid. In the Army, I've been in situations where the comms center started out as just a single VHF radio mounted in a truck, a map board and a message log. Over time it morphed into a dedicated shelter with multi-channel voice and digital HF and VHF capabilities, a landline switchboard and a SATCOM link. What all this gear wasn't, was stuffed into a single box. That was impractical and unwieldly; each communications system required more elbow room than a boxed enclosure could offer.

Far-fetched for a civilian operation? Not at all. With growing reliance on systems like Winlink and other HF-based digital tools like JS8CALL, Fldigi, VarAC, and use of internet-linked VHF voice and data modes like DSTAR, C4FM, DMR and Echolink, the technology stack in a civilian comms center can easily match that found in military units. And let's not forget the vulnerability of terrestrial-based internet. There's a reason a Starlink package is a standard part of many civilian communications centers.

But a comms center isn't really about comms equipment. The job of the comms center is moving information, and the synchronization of communications across systems, agencies and departments. With this in mind, a comms center's key functions include:

  • Establishing and maintaining communications support as directed by the event director, incident commander or incident communications leader
  • Maintaining the event/incident radio log
  • Conducting an overall 'radio watch'; ensuring all comms systems are up, operating and proactively monitored
  • Interfacing communications systems. For example, establishing radio-wire interfaces, making sure information received via radio is 'hopped' to the appropriate systems like WebEOC, internal chat systems, status boards, etc.
  • On-boarding new personnel, departments or agencies that show up to support the incident, making sure their organic communications systems are integrated into the communications architecture
  • Radio set-up and programming
  • Troubleshooting communications issues
So... while a go-box can serve as a component of a comms center, it should never be considered an all-encompassing solution. For this reason I'm not a big fan of the 'box' solution. It seems to impose conceptual restrictions, trying to force the mission requirements to fit the box, not the other way around.

So let's stop focusing on go-boxes and instead focus on flexible, mission focused comms centers. Start thinking outside the box.

W8BYH out

03 March 2024

A Small KX2 Upgrade

I continue to be impressed by Elecraft and their long-term support for products that other manufacturers would consider 'end-of-life' and not worth investing time or effort on. Case in point is the KX2, introduced in 2016. While eight years isn't really that long for an amateur radio to be in production, it is unusual for a radio to see firmware improvements and factory hardware upgrades this far into its production life. Yet 'obsolete' and 'end of life' don't seem to be in the Elecraft vocabulary; they continue to provide support for rigs that have been out of production for years. There are no orphans in the Elecraft line-up.

Case in point with the KX2 is the recent release of the KXIBC2 internal battery charger board. The KXIBC2 replaces the internal clock board and adds the ability to charge a factory Li-ion battery inside the rig and provides a real-time clock. This is a big improvement, and addresses one of the major complaints many have of the KX2. As designed, the battery pack had to be charged outside of the rig - open the radio and remove the battery, plug it into a charger, when fully charged re-install it in the radio. Elecraft originally designed the radio this way because back in 2015, when the design was finalized, Li-ion charging technology wasn't what it is today, and Elecraft thought it was smarter and safer to require charging outside the radio. Nine years on, Elecraft figured out a power management system that allows the Li-ion pack to be charged safely while inside the radio. The KXIBC2 board is available as a factory option, or a user installed kit.

The kit arrived a week ago, and yesterday I decided it was time to dive in and do the upgrade. In typical Elecraft fashion, the installation instructions are well thought out and easy to follow. It's a simple matter of pulling out the old clock board, popping in the new charger board, soldering two jumpers to the main board and adjusting the radio settings to recognize the new board. In my case I needed to do a firmware update (v3.00 to v3.02). 

The KXIBC2 board installed (right side of the picture. It replaces to old real-time clock 
board, but provides a charge controller plus real-time clock. The red and white pins
will be soldered to the main board. The large open space will be taken up by the Li-ion battery

The KXIBC2 board seen from the 'outboard' side

Jumper wires soldered in place on the main board

Battery pack in place, time to test. The LED on the charger board is a steady
yellow, so the battery is charging and all's good!

A quick firmware update brings everything up to snuff

The little rig is merrily charging away, getting ready for the next radio adventure!

There you have it. A dandy little rig made even better, courtesy of a company that actually listens to and engages with its customers.

W8BYH out